3.533 \(\int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \, dx\)

Optimal. Leaf size=209 \[ \frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b d}-\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b d} \]

[Out]

-2*(a-b)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*
x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b/d+2*(a-b)*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+
b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b/d

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 209, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3829, 3832, 4004} \[ \frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b d}-\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]*Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(-2*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*
Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b*d) + (2*(a - b)*Sqrt[a + b]*C
ot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]
))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b*d)

Rule 3829

Int[csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[a - b, Int[Csc[e + f
*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[b, Int[(Csc[e + f*x]*(1 + Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]],
 x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rubi steps

\begin {align*} \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \, dx &=(a-b) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx+b \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=-\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b d}+\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 10.34, size = 232, normalized size = 1.11 \[ \frac {2 \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{d}-\frac {2 \sqrt {a+b \sec (c+d x)} \left (\tan \left (\frac {1}{2} (c+d x)\right ) (a \cos (c+d x)+b)+\frac {(a+b) \sqrt {\frac {a \cos (c+d x)+b}{(a+b) (\cos (c+d x)+1)}} \left (E\left (\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )-F\left (\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )\right )}{\sqrt {\frac {\cos (c+d x)}{\cos (c+d x)+1}}}\right )}{d \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\sec (c+d x)} \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} (a \cos (c+d x)+b)} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]*Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(2*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/d - (2*Sqrt[a + b*Sec[c + d*x]]*(((a + b)*Sqrt[(b + a*Cos[c + d*x])/
((a + b)*(1 + Cos[c + d*x]))]*(EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - EllipticF[ArcSin[Tan[(c
+ d*x)/2]], (a - b)/(a + b)]))/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])] + (b + a*Cos[c + d*x])*Tan[(c + d*x)/2]))
/(d*(b + a*Cos[c + d*x])*Sqrt[Sec[(c + d*x)/2]^2]*Sqrt[Sec[c + d*x]]*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]])

________________________________________________________________________________________

fricas [F]  time = 0.50, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\sqrt {b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right ), x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(d*x + c) + a)*sec(d*x + c), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sec(d*x + c) + a)*sec(d*x + c), x)

________________________________________________________________________________________

maple [B]  time = 1.36, size = 814, normalized size = 3.89 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(a+b*sec(d*x+c))^(1/2),x)

[Out]

-2/d*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(1+cos(d*x+c))^2*(-1+cos(d*x+c))^2*((cos(d*x+c)/(1+cos(d*x+c)))^(1/2)
*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)*cos(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-
b)/(a+b))^(1/2))*a+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)*
cos(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a
*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)*cos(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+
b))^(1/2))*a-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)*cos(d*
x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d
*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*sin(d*x+c)+(cos
(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+
c),((a-b)/(a+b))^(1/2))*b*sin(d*x+c)-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))
^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*sin(d*x+c)-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2
)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^
(1/2))*b+a*cos(d*x+c)^2-a*cos(d*x+c)+b*cos(d*x+c)-b)/sin(d*x+c)^5/(b+a*cos(d*x+c))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sec(d*x + c) + a)*sec(d*x + c), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}}{\cos \left (c+d\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/cos(c + d*x))^(1/2)/cos(c + d*x),x)

[Out]

int((a + b/cos(c + d*x))^(1/2)/cos(c + d*x), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a + b \sec {\left (c + d x \right )}} \sec {\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a + b*sec(c + d*x))*sec(c + d*x), x)

________________________________________________________________________________________